
Towards Formal Verification of Dynamic Memory Allocator
Properties Using BIP Framework

Xiutai Lu
School of information and software
engineering, University of Electronic
Science and Technology of China,

Chengdu,, China,
xtlu@std.uestc.edu.cn

Yang Gao
School of information and software
engineering, University of Electronic
Science and Technology of China,

Chengdu,, China,
gyang@std.uestc.edu.cn

Wensheng Guo*
School of information and software
engineering, University of Electronic
Science and Technology of China,

Chengdu,, China,
gws@uestc.edu.cn

Fengbo Zhang
School of information and software
engineering, University of Electronic
Science and Technology of China,

Chengdu,, China,
1030337689@qq.com

Xia Yang
School of information and software
engineering, University of Electronic
Science and Technology of China,

Chengdu,, China,
xyang@uestc.edu.cn

Jun Wan
School of information and software
engineering, University of Electronic
Science and Technology of China,

Chengdu,, China,
1457221049@qq.com

ABSTRACT
Dynamic storage allocation (DSA) algorithms play an important
role in the Real-Time Operating systems (RTOSs) community. It
allows the RTOS to use limited memory efficiently. To ensure the
DSA properties of a dynamic memory allocator, it is important to
verify the implementation of its DSA algorithms. However, most
previous works ignore memory interactive behaviors and just verify
individually each function involved in DSA. Our main contribution
in this paper is to verify the consistency of the memory interactive
properties and its implementation. For this purpose, we use the BIP
(Behavior, Interaction, Priority) Framework to deal with abstract
behaviors, properties, and cross references to implementation code.
We chose the TLSF as a testbed for formal verification of dynamic
memory allocator properties and have produced a verification of
TLSF. Both the behavior operations and property requirements of
the TLSF have been specified in the BIP framework and the entire
verification process is automated.

CCS CONCEPTS
• Security and privacy; • Formal methods and theory of secu-
rity; • Logic and verification;

KEYWORDS
Dynamic memory allocator, BIP framework, Automated verification

ACM Reference Format:
Xiutai Lu, Yang Gao, Wensheng Guo*, Fengbo Zhang, Xia Yang, and Jun
Wan. 2021. Towards Formal Verification of Dynamic Memory Allocator
Properties Using BIP Framework. In The 5th International Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSAE 2021, October 19–21, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8985-3/21/10. . . $15.00
https://doi.org/10.1145/3487075.3487122

Computer Science and Application Engineering (CSAE 2021), October 19–21,
2021, Sanya, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3487075.3487122

1 INTRODUCTION
In practical RTOS, the security of dynamic memory allocation al-
gorithm largely determines the stability of system operation. The
goal of the dynamic memory allocation algorithm is to dynamically
provide the system program with the amount of memory required
at runtime, which has complex DSA properties. The complexity
mainly comes from the following aspects: 1) The diversity of mem-
ory allocation requirements. 2) Performance considerations of the
memory allocation process. 3) Fragmentation management of mem-
ory blocks in memory pool. To ensure that the memory allocation
can always run efficiently and stably, the memory management
module needs to provide a good average response time and a low
fragmentation rate. These behaviors and attributes of the dynamic
memory allocator are an important starting point for this article.
We need to adopt extremely strict formal methods to specify and
verify the implementation of these behaviors and properties.

We chose TLSF as a testbed for formal verification of dynamic
memory allocator properties. The TLSF algorithm provides explicit
allocation and release of memory blocks with a temporal costΘ(1).
It has the features of automatic memory consolidation, flexibility,
low memory fragmentation and has been applied in many systems,
such as Amiga OS [1], Xtratum Hypervisors [2], Orocos [3] and so
on. But at the same time, the complexity of the algorithm is greatly
increased. Therefore, the formal verification work will be more
complicated, bring more verification problems, mainly reflected in
the following aspects: 1) Formally specify complex data structures;
2) Assertion definition and reasoning of behavior operations; 3)
Formal specification of complicated DSA properties.

To deal with the above-mentioned problems, we plan to use the
BIP Framework to model TLSF’s abstract behaviors [4], properties,
and cross references to implementation code, which is a more effec-
tiveness method to verify the dynamic memory allocator used in
RTOS. More precisely, our paper makes the following contributions:

https://doi.org/10.1145/3487075.3487122
https://doi.org/10.1145/3487075.3487122
https://doi.org/10.1145/3487075.3487122

CSAE 2021, October 19–21, 2021, Sanya, China Xiutai Lu et al.

• We present a standardized modeling process for quickly
defining abstract behavior of a dynamic memory allocator.

• We formally define several critical DSA properties based
on the Linear Temporal Logic and verify these properties
automatically in the BIP framework.

• We chose the TLSF as a testbed for formal verification of
dynamic memory allocator properties and have produced a
verification of TLSF.

This paper is organized as follows. Section 2 further discusses
the background and related work on verification methods for the
memory management module. Section 3 explains the proposed
approach and how it is applied to the TLSF algorithm. Section 4
describes the implementation of the verification method and shows
the verification results. Section 5 discusses conclusions and future
work.

2 RELATEDWORK
In this section, we will briefly outline related work. Yu et al. [5]
of Yale University used CAP to build an authentication library for
dynamic storage allocation, and further used Coq for verification.
They defined the MIPS machine model, the formal specification of
the memory allocation algorithm, and the nature of the final proof
in Coq. But the authentication library only contains the simplest
malloc and free operations, and assumes that the memory will not
be exhausted. The verified dynamic allocation algorithm is too
simple and not representative.

Sarra et al. [6] propose a verification method for smart contracts
in a supply chain management system. The method is divided into
two parts: (1) use the BIP framework to model the abstract behavior
of the smart contract, (2) convert the BIP model to the NuSMV
model and verify the security attributes. In the verification process,
linear sequential logic is used to describe the security properties of
the smart contract, and finally the NuSMV model checker is used to
verify whether the security properties are satisfied. This verification
method uses BIP language to describe the behavior of the system,
and uses security attributes to describe the requirements of the
system, which verifies the consistency of the implementation and
the requirements.

The Japan Institute of Information Technology verified the mem-
ory management of the Topsy operating system [7]. The memory
management module of the Topsy kernel uses heap management to
provide basic dynamic memory allocation functions. This method
also uses Coq as a formal tool to define the implementation of the
memory allocation algorithm, uses separation logic to describe the
assertion and specification of the algorithm, and finally proves the
correctness of the code interactively in Coq. But the Topsy kernel
is a kernel used for teaching, and its memory allocation algorithm
is too simple. In addition, its verification is only for verification at
the code level.

Qiao et al. [8] conducted a formal verification of the spacecraft
memory management system based on the Event-B method. The
verification process is based on the Rodin modeling tool, using
the Event-B mathematical abstraction method to formalize the sys-
tem memory management model. For the generated model, verify
whether it can meet the properties extracted from the requirements

Figure 1: General Approach.

of the memory management module, so as to illustrate the cor-
rectness of the operating system memory model. In the modeling
process, the memory management requirements, design and im-
plementation are hierarchically modeled from top to bottom. The
method for determining the safety requirements of the memory
management module in this project is worthy of reference, but the
verification process is complicated and not universal.

Frederic et al. [9] proposed a formal verification method for
the memory allocation module of the IoT operating system. This
method uses the deductive verification tool, Frama-C, to specify
and verify the code. Frama-C provides various static and dynamic
analyzers as separate plug-ins, and comes with its own behavioral
specification language, ACSL. The paper uses ACSL to describe the
function of the memory allocation module. After the automatic
verification of Frama-C, an out-of-bounds access error was found.
However, the memory allocation module verified by this project
uses a static memory allocation algorithm, the amount of code is
small, and the security attributes of the verification are few.

3 FORMAL VERIFICATION OF TLSF
ALGORITHM

The proposed approach devised for TLSF algorithm verification is
depicted in Figure 1. The whole verification process is divided into
four steps. In step 1, we analyze the TLSF algorithm, determine
the main functions, and remove the unnecessary parts of the code.
To reduce the difficulty of modeling and determine the security
requirements, we simplify the algorithm flow and divide the TLSF
algorithm into three functional modules: creating a memory pool,
allocating memory, and releasing memory. In step 2, a set of con-
version rules is used to convert each functional module of the TLSF
algorithm into a finite state machine (FSM), which provides an
appropriate level of abstraction for BIP modeling.

In step 3, we use the Behavior Interaction Priority (BIP) frame-
work [10] to model the abstract behavior of the finite state machine

Towards Formal Verification of Dynamic Memory Allocator Properties Using BIP Framework CSAE 2021, October 19–21, 2021, Sanya, China

(FSM) to build the BIP model of the TLSF algorithm. The BIP frame-
work is a general system-level formal modeling framework that
supports the hierarchical structure and includes a set of tools that
support modeling, model conversion, simulation, verification, and
code generation. The BIP framework has strong design correction
features, which are convenient for modeling the interaction be-
tween FSMs. It has been used many times to verify the consistency
of system design and implementation, such as robotic systems and
real-time systems [11-12].

In step 4, to check the consistency of the TLSF algorithm and
security requirements, the expected security requirements of the
TLSF algorithm are formalized into linear temporal logic (LTL)
security properties and applied to the generated BIP model. The BIP
tool will check whether each state transition path of the BIP model
meets the security properties definition to achieve the purpose of
verification. If any security attribute is violated, the path inspection
will stop and a counterexample will be given to show the error
state, otherwise, it will prove that the TLSF algorithm meets the
requirements of all security attribute.

3.1 TLSF Algorithm Analysis
In this section, we will analyze the TLSF algorithm, identify the
main functional modules, and related security requirements. TLSF
is a dynamic memory allocation algorithm that is very suitable for
the embedded field, its goal is to dynamically provide the required
amount of memory to the application at runtime [13].

In order to satisfy the constraints of embedded real-time systems
such as high real-time requirements, less physical memory, and not
supporting MMU. TLSF combines two mechanisms: Segregated list
and Bitmaps fit. TLSF maintains a doubly linked-list of multiple
free blocks to store free blocks of different sizes. When receiving a
memory request, TLSF first performs a two-level index according
to Bitmaps fit, finds the corresponding free link list, and takes out
the free block pointed to by the linked-list header for allocation.

Compared with other DSA algorithms, TLSF has two notable
features: bounded and short response time, bounded and low frag-
mentation, to fulfill the most important real-time requirements. In
general, TLSF operates on memory, while memory management
has only two operations: allocation and release. Meanwhile, before
performing memory operations, TLSF needs to initialize a large
memory block as the memory pool. Therefore, the main functional
modules of TLSF can be divided into the following three parts:

• Creating Memory Pool (CMP): The module is used to
complete various initialization operations, including initial-
izing the free linked-list, initializing the two-dimensional
array storing the head of the free linked-list, initializing the
index value of the two-level index, etc. After completing a
series of initialization operations, insert the initial memory
block into the corresponding free linked-list, and set the size
of the memory block to complete the creation of the memory
pool.

• Allocating Memory (AM): The module needs to allocate
an appropriate free memory block according to the request.
After receiving the memory request, first judge whether the
size of the requested memory block meets the requirements.

Then according to the two-level index, find the correspond-
ing free block linked-list, and obtain the appropriate free
block. If the free block is larger than the requested size, and
the free block after cutting is larger than the specified mini-
mum size, the cutting operation will be performed.

• Releasing Memory(RM): The module needs to determine
whether the released memory block can be merged into a
larger free memory block and inserted into the correspond-
ing free linked-list. After receiving the release request, check
whether the previous or the next physical block of the mem-
ory block is free. If it is free, perform the merge operation,
mark the merged memory block as free and insert it into
the corresponding free linked list to complete the release
operation.

Combined with the above design criteria and functional modules,
we put forward the following security requirements. TLSF must at
least fulfill these security requirements to ensure the security and
reliability of memory management operations.

• The memory block calling the release interface must have
been used

• The memory block calling the allocation interface must be
free

• Ability to select the most suitable memory block during
allocation

• If the allocated memory block is larger than the requested
memory block, the allocated memory needs to be divided

• If the allocation request is fulfilled, the allocated address
space is continuous

• Any two adjacent memory blocks cannot overlap
• When the state of the memory block changes, the data struc-
ture of the free block in the memory management will be
updated immediately

• If two adjacent memory blocks are free, the merge operation
is performed

3.2 Finite Automatic State Machine Modeling
In this section, we convert the three functional modules of the TLSF
algorithm into finite state machines (FSM). A FSM is a mathematical
model composed of a finite number of states and a set of transition
rules. Its function is to describe the state sequence of the object
in its life cycle, and how to respond to various external events. In
computer science, FSM is widely used to model application behavior.

FSM operates by responding to a series of events. Each event
is within the control range of the transition function belonging to
the current state, where the range of the function is a subset of the
state. The function returns the next state (perhaps the same state).
At least one of these states is the final state, and when the final
state is reached, the state machine stops.

In the process of constructing FSM, the function of the func-
tional module is defined as a conversion rule. After the function is
executed, the current behavior of the functional module is defined
as a state. Taking the AM function module as an example, the entire
module is divided into ten states, and each state represents a be-
havior of the module. Different states jump to other states through
their own conversion rules, and state changes also mean that the be-
havior of the module has changed, as shown in the Figure 2. There

CSAE 2021, October 19–21, 2021, Sanya, China Xiutai Lu et al.

Figure 2: FSM of AM in TLSF Algorithm.

are two types of conversion rules, including general conversion
and protection. Protection is a set of conditions placed in square
brackets. The previous state must meet the conditions before it can
be converted to the next state.

• Invoke: The invoke state is the initial state of a FSM, which
in turn directs the input towards the appropriate state based
on the required transition, i.e. the called function.

• ReqSize: Adjust an allocation size to be aligned to word size,
and no smaller than internal minimum

• JudSize: Before allocating memory, the AM checks whether
the adjusted memory size is valid.

• MapSearch: According to the adjusted memory size, find
the index of the corresponding free linked-list.

• SeaSuitBlo: According to the index, find the suitable free
memory block. If no free memory block is found, the memory
allocation request cannot be satisfied and a warning is issued.

• RemFreeBlo: Remove a free block from the free list.
• JudgeSplit:When a suitable free memory block is found, the
AM checks whether the free memory block can be divided.

• BloSplit: The free memory block is divided into two parts,
the first part is used to satisfy the memory allocation request,
and the second part is marked as Free.

• BloInsert: Insert the remaining free memory blocks into
the corresponding free linked-list.

• Alert: Once it detects that the requested memory size is 0
or no suitable free memory block is found, AM will trigger
an alert.

The CMP module has five states: invoke, initializing control
structure, initializing free block linked list, setting initial memory
block, and setting adjacent memory block. The RM module has five
states: invoke, release memory block, merge memory block, mark
memory block, and insert free linked-list. Since the modeling pro-
cess is the same as the AM module, it will not be further explained
in this paper.

3.3 Abstract State Behavior Modeling
BIP (Behavior, Interaction, Priority) framework is a combined mod-
eling framework for complex systems, including BIP language and

BIP tools. Among them, BIP language is a component-based lan-
guage for modeling and programing complex systems. The BIP tools
include the compiler and the engine used to compile and execute
BIP programs. In this paper, we primarily adopt two concepts from
BIP language: atomic components and connectors.

Atomic components are the basic elements that describe module
behavior and interfaces. They form larger components through
the definition of interaction and priority. Atomic components are
described by Petri nets or FSM models with added variables and
ports. Among them, variables are used to store internal data; ports
are migrating tags, which are used to define interfaces for interac-
tion with other modules. The synchronization and data exchange
among components are described by connectors. A connector is a
stateless entity that supports interaction through a set of interface
ports of components. For every interaction, the connector provides
the guard and the data transfer to exchange data across the ports
involved in the interaction. BIP defines two types of interaction:
rendezvous means that all ports must participate in the interaction;
broadcast means that there are an initiating port and a series of
receiving ports for the interaction.

An atomic component is used to model each functional module’s
behavior. After modeling the functional modules as FSM, we
translate each FSM into BIP atomic components, which are
expanded by variables and ports. The Place keyword is used to
list the available states, while Initial is used to identify the initial
state. To create the transitions between states, keywords on, from,
and to are used. The Provided keyword is used to declare the
restriction conditions of state transition. The condition preceded by
provided represents the guard while statements after do represents
the actions or the function’s body statement. The Port represents
the state transition function in the FSM, specifies the unique name
of the transition, and is also the interface for interaction. The data
exchange and synchronization among different atomic components
are realized through the Port. Besides, the internal data and
interactive data of the component are described using variables.
Types of variables are either native or external. In addition, some
basic functions of functional modules can be declared using
extern, such as judgment functions and bit manipulation functions,
making atomic components closer to the actual execution process
of functional modules. The BIP notation of the AM module is
detailed as follows. The BIP notation of the CMP module and the
RMmodule are similar to the AMmodule and will not be displayed.

Code 1: The BIP notation of the AM module
Atomic component: atom type AM()
Local variable: data size_t malloc_size,
data size_t adjust_size, data size_t
remain_size, data blo remain_blo
Port (Functions inside the module): port
BlockPort_t insize(), port BlockPort_t
index(), port BlockPort_t suitblo(), port
BlockPort_t unsuitblo()
Interactive port: export port OnePort_t
loop(suit_blo), export port BlockPort_t
jug(), export port BlockPort_t fmalloc()
Ten states of the module: place Invoke,
ReqSize, JudSize, SeaIndex, SeaSuit,

Towards Formal Verification of Dynamic Memory Allocator Properties Using BIP Framework CSAE 2021, October 19–21, 2021, Sanya, China

RemFree, BloSplit, RemainBlo, InsRM
Define the state transition process
and variable values: initial to Invoke
do { malloc_size = malloc_size();
adjust_size = set_zero(); remain_size =
set_zero();fl=0; sl=0;id=0;} on insize
from Invoke to ReqSize do {adjust_size
= adjust_request_size(malloc_size);
} on fmalloc from ReqSize to
JudSize provided (id == 0) do
{j=judge_size(adjust_size);} on jug from
ReqSize to JudSize provided (id == 1) do {
id =0;j=judge_size(adjust_size);} on index
from JudSize to SeaIndex provided (j==1)
do {j = judge_suitblo(suit_blo); suit_blo =
search_suitable_block(suit_fl,suit_sl);} on
suitblo from SeaIndex to SeaSuit provided
(j==0) do {j=judge_block(suit_blo);}

Connectors connect ports from different functional modules to
indicate the interaction mode among them. The rendezvous mode
only needs to declare the ports participating in the interaction,
while the broadcast mode needs to define the data transmission
process. There are three interactions between functional modules:

• After CMP creates the memory pool, AM can start to allocate
memory.

• After AM finishes allocating memory once, RM starts to
release memory.

• After RM releases memory, AM continues to allocate mem-
ory.

The interaction between CMP and AM, RM and AM does not
involve data transmission and adopts rendezvous mode, while the
interaction between AM and RM needs to ensure that the same
memory block is allocated and released. When data interaction is
involved, the broadcast mode is adopted. We show the interaction
between the creating memory pool module CMP and the allocating
memory module AM and RM using connectors (circles) in Figure 3

A snippet of our BIP code to synchronize the connectors
between CMP, AM, and RM is detailed as follows.

Code 2: BIP Connector code
compound type Compound()
Atomic component of CMP: cmp()
Atomic component of AM: am()
Atomic component of RM: rm()
Sync connector: Syn c1(interactive port of
cmp, interactive port of am)
Sync connector: Syn c2(interactive port of
am, interactive port of rm)
Sync connector: AMRM c3(interactive port of
rm, interactive port of am)
end

3.4 Security Properties Modeling
After completing the abstract behavior modeling, we use linear
temporal logic (LTL) to describe the security requirements of TLSF

Figure 3: InteractionModeling betweenAM, RM, CMP using
Connectors.

algorithm, construct the security attributes of BIP model, and then
verify whether each state transition path meets the security at-
tribute definition to achieve the purpose of verification. As a formal
specification language, LTL can describe the properties of complex
systems, and is widely used in program analysis and verification. In
LTL, G {n} denotes the security attribute that any reachable state in
n-step migration should maintain, and f {n} represents the active at-
tribute that any reachable state in n-step migration will eventually
satisfy. Using LTL, the security requirements of TLSF algorithm are
modeled as follows:

Property 1: The memory block allocated by AM must be free:

• G{n}(AM.a==a_judmalloc⇒F{1}(AM.s==s_free))

Property 2: The memory block released by RM must be used:

• G{n}(RM.a==a_judfree⇒F{1}(AM.s==s_used))

Property 3: Am must select the most suitable memory block
when it is allocating:

• G{n}(AM.a==a_malloc⇒F{1}(AM.suit==true))

CSAE 2021, October 19–21, 2021, Sanya, China Xiutai Lu et al.

Property 4: If the allocated memory block is larger than the
requested memory block, AM must split the allocated memory
block:

• G{n}(AM.a==a_sizelarge⇒F{1}(AM.s==s_split))
Property 5: If the allocation request is satisfied, the address

space allocated by AM must be continuous:
• G{n}(AM.a==a_judcontinu⇒F{1}(AM.continu==true))

Property 6: Adjacent memory blocks must not overlap:
• G{n}(AM.a==a_judoverlap⇒F{1}(AM.overlap==true))

Property 7: After RM performs the release operation, if two
free memory blocks are adjacent, they must be merged:

• G{n}(RM.prevfree==true||RM.nextfree==true⇒F{1}
(RM.s==s_merge))

Property 8: After the memory block status changes, the free
block data structure in the memory management must be updated
immediately:

• G{n}(AM.a==a_statechange⇒F{1}(AM.freeblock==true))

4 IMPLEMENTATION AND VERIFICATION
RESULTS

4.1 Operation Results of BIP Model
After using the BIP language to describe the abstract behavior of
the TLSF algorithm and establish the BIP model, we use the BIP
tool to process the BIP model and generate the executable system.
The compiler reads the BIP model, converts it into an intermediate
language that can be processed by the simulation engine, and links
with the simulation engine. The simulation engine accepts the rep-
resentation of the BIP model and simulates all possible interaction
behaviors. Finally, the simulation engine will generate a complete
behavior path and create an executable system. The system auto-
matically simulates the state transition process according to the
state and state transition function defined by the BIP language.
The simulation results show the selected ports and state internal
variables in each state transition process, as shown in Figure 4

4.2 Security Properties Verification Results
We use the property detection engine to detect the executable
system, to verify whether the requirements of each security
attribute are met. The property detection engine monitors the
behavior path of the BIP model based on the security attribute
specification. The behavior analysis engine gives the verification
results of all legal execution paths or illegal paths. After verification
by the property detection engine, the BIP model of TLSF only fulfills
the requirements of seven security attributes. Figure 5 shows the
verification result for Property 1. To facilitate attribute validation,
we define some state variables using constants is detailed as follows.

Code 3: Definition of state variables
Block state id definitions:
const data int s_init = 0
const data int s_free = 1
const data int s_used = 2
const data int s_split = 3
const data int s_merge = 4

Figure 4: Simulation Results.

Figure 5: Verification result of Property 1.

Action id definitions:
const data int a_init = 0
const data int a_judmalloc = 10
const data int a_judfree = 11
const data int a_malloc = 12
const data int a_searchblo = 13
const data int a_sizelarge = 14
const data int a_adjacentfree = 15
const data int a_judoverlap = 16
const data int a_statechange = 17
const data int a_judcontinu = 18

As shown in Figure 6, Property 3 is not satisfied. After path
inspection, it is found that the problem occurs in state 89, as shown
in Figure 7. No suitable memory block was found in this state, but
the allocation operation was still performed. Combined with code
inspection, it was found that in the process of extern TLSF source
code, there was a problem with the function of finding a suitable
memory block. This function misses the code for judging whether
the current free block linked-list is empty, so by default, it returns
the first free block linked-list head pointer found. As a result, AM
did not select the most suitable memory block when allocating,
and a security hole appeared. Therefore, when we were performing
security attribute testing, there was a failure result. After modifying

Towards Formal Verification of Dynamic Memory Allocator Properties Using BIP Framework CSAE 2021, October 19–21, 2021, Sanya, China

Figure 6: Verification Result of Property 3.

Figure 7: Path Inspection Result of Property 3.

Figure 8: Verification Result after Correcting Errors.

the error code, we use the property detection engine to verify again.
Property 3 is satisfied, and the verification result is shown in Figure
8

5 CONCLUSION AND FUTUREWORK
This paper presents a formal verification method using the BIP
framework and linear temporal logic (LTL), which applies model-
checking to the dynamic allocation algorithm of the memory man-
agement module. We first converted the TLSF algorithm into FSMs
and then used the BIP language to simulate their interactions. To
verify the behavior correctness of the TLSF algorithm, the expected
security requirements of the TLSF algorithm are formalized as LTL

security attributes and applied to the generated BIP model. Finally,
the property detection engine is used to give the verification re-
sult. The method proposed in [8] is based on the Event-B method
for formal verification of the TLSF algorithm. For similar security
requirements, an additional 105 manual proofs are required. In
contrast, the verification method proposed in this paper achieves
purely automated verification in terms of security requirements
verification, with a higher degree of automation and better univer-
sality. In future work, we will further study the real-time problem of
the algorithm. It is difficult to describe the strong real-time nature
in the BIP language, and we plan to extend our approach to achieve
this verification purpose.

REFERENCES
[1] Reimer J (2007). A history of the Amiga, part 2: The birth of Amiga[J]. last updated

Aug, 12, 2.
[2] Masmano M, Ripoll I, Crespo A, Metge J (2009). Xtratum: a hypervisor for safety

critical embedded systems[C]. 11th Real-Time LinuxWorkshop, Citeseer, 263-272.
[3] Bruyninckx H (2001). Open robot control software: the OROCOS project[C]. Pro-

ceedings 2001 ICRA. IEEE international conference on robotics and automation
(Cat. No. 01CH37164). IEEE, 3: 2523-2528.

[4] Abdellatif T, Brousmiche K L (2018). Formal verification of smart contracts based
on users and blockchain behaviors models[C]. 2018 9th IFIP International Con-
ference on New Technologies, Mobility and Security (NTMS), IEEE, 1-5.

[5] Yu D, Hamid N A, Shao Z (2004). Building certified libraries for PCC: Dynamic
storage allocation[J]. Science of Computer Programming, 50(1-3), 101-127.

[6] Alqahtani S, He X, Gamble R, Papa M (2020). Formal Verification of Functional
Requirements for Smart Contract Compositions in Supply Chain Management
Systems[C]. Proceedings of the 53rd Hawaii International Conference on System
Sciences, 5278-5287.

[7] Fankhauser G, Conrad C, Zitzler E, Plattner B, 2000 Topsy–a teachable operat-
ing system[J], Computer Engineering and Networks Laboratory, ETH Zürich,
Switzerland.

[8] Qiao L, Yang MF, Tan YL, Pu GG, Yang H (2017). Formal verification of memory
management system in spacecraft using Event-B. Ruan Jian Xue Bao/Journal of
Software, 28(5), 1204-1220.

[9] Mangano F, Duquennoy S, Kosmatov N (2016). Formal verification of a memory
allocation module of contiki with frama-c: A case study[C]. International Con-
ference on Risks and Security of Internet and Systems. Springer, Cham, 114-120.

[10] Bliudze S, Cimatti A, Jaber M, Mover S, Roveri M, Saab W, Wang Q (2015).
Formal verification of infinite-state BIP models[C]. International Symposium on
Automated Technology for Verification and Analysis. Springer, Cham, 326-343.

[11] Basu A, Gallien M, Lesire C, Nguyen TH, Bensalem S, Ingrand F, Sifakis J (2008).
Incremental Component-Based Construction and Verification of a Robotic Sys-
tem[C]. ECAI, 178, 631-635.

[12] Basu A, Bozga M, Sifakis J (2006). Modeling heterogeneous real-time components
in BIP[C]. Fourth IEEE International Conference on Software Engineering and
Formal Methods (SEFM’06), Ieee, 3-12.

[13] Zhang Y, Zhao Y, Sanan D, Qiao L, Zhang J (2019). A Verified Specification of
TLSF Memory Management Allocator Using State Monads[C]. International Sym-
posium on Dependable Software Engineering: Theories, Tools, and Applications.
Springer, Cham, 122-138.

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 FORMAL VERIFICATION OF TLSF ALGORITHM
	3.1 TLSF Algorithm Analysis
	3.2 Finite Automatic State Machine Modeling
	3.3 Abstract State Behavior Modeling
	3.4 Security Properties Modeling

	4 IMPLEMENTATION AND VERIFICATION RESULTS
	4.1 Operation Results of BIP Model
	4.2 Security Properties Verification Results

	5 CONCLUSION AND FUTURE WORK
	References

